Approximations from Subspaces of C0(X)

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Approximations from Subspaces for the Singular Value Problem

The computation (or approximation) of some of the smallest or largest singular values of a large sparse matrix is a big challenge, having many important applications. In this talk we discuss approximations to singular triples that can be obtained from subspaces. One of the topics is the concept of harmonic singular triples, introduced in [1]. The word “harmonic” expresses the fact that we try t...

متن کامل

From Subspaces to Submanifolds

This paper identifies a broad class of nonlinear dimensionality reduced (NLDR) problems where the exact local isometry between an extrinsically curved data manifold M and a low-dimensional parameterization space can be recovered from a finite set of high-dimensional point sampels. The method, Geodesic Nullsapce Analysis (GNA), rests on two results: First, the exact isometric parameterization of...

متن کامل

$varepsilon$-Simultaneous approximations of downward sets

In this paper, we prove some results on characterization of $varepsilon$-simultaneous approximations of downward sets in vector lattice Banach spaces. Also, we give some results about simultaneous approximations of normal sets.

متن کامل

Covering of subspaces by subspaces

Lower and upper bounds on the size of a covering of subspaces in the Grassmann graph Gq(n, r) by subspaces from the Grassmann graph Gq(n, k), k ≥ r , are discussed. The problem is of interest from four points of view: coding theory, combinatorial designs, q-analogs, and projective geometry. In particular we examine coverings based on lifted maximum rank distance codes, combined with spreads and...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Approximation Theory

سال: 2001

ISSN: 0021-9045

DOI: 10.1006/jath.2001.3596